MOX輪 軽水炉 ーマル プルトニ ブム利用の危険性

2021年11月18日

上澤千尋

kamisawa@cnic.jp

(原子力資料情報室)

MOX燃料使用のライセンス

原子炉名	電力会社	出力	炉型	運転開始	運転年数	新規制基準
泊3	北海道	91.2	PWR	2009/12/22	11	審査中 (2015/12/18)
大間	電源開発	138.3	ABWR			審査中 (2014/12/16)
女川3	東北	82.5	BWR	2002/1/30	19	未申請
福島第一3	東京	78.4	BWR	1976/3/27	36 (事故)	閉鎖
柏崎刈羽3	東京	110.0	BWR	1993/8/11	28	未申請
浜岡 4	中部	113.7	BWR	1993/9/3	28	審査中 (2015/1/26)
志賀1	北陸	54.0	BWR	1993/7/30	28	未申請
高浜3	関西	87.0	PWR	1985/1/17	36	2015/2/12
高浜4	関西	87.0	PWR	1985/6/5	36	2015/2/12
島根 2	中国	82.0	BWR	1989/2/10	32	2021/9/15
伊方 3	四国	89.0	PWR	1994/12/15	26	2015/7/15
玄海3	九州	118.0	PWR	1994/3/18	27	2017/1/18

(大間をのぞいて, 燃焼度40000MWD/t, 炉心の3分の1までに制限)

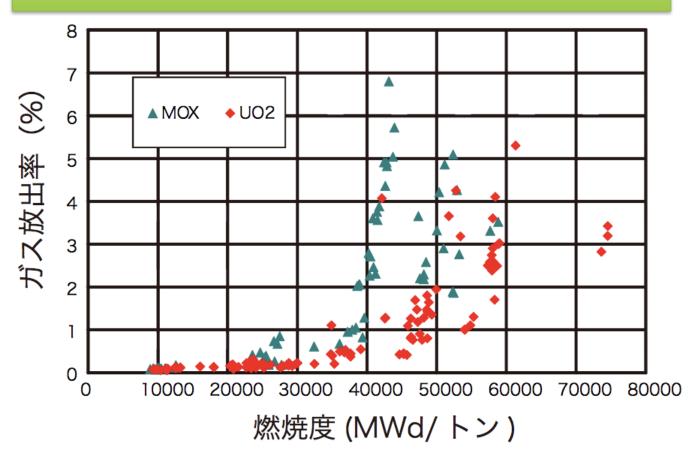
MOX燃料の物理的・化学的性質

ulini	酸溶解性 故時	硝酸に溶けやすい	溶解が容易になるた め核拡散につながる
	融点	40°C~60°C低下	<mark>燃料が破損</mark> しやすく なる
	熱伝導度	下がる	<mark>燃料が破損</mark> しやすく なる
	放射性 希ガス 放出率	高くなる	被曝の危険性を増す

通常時

MOX燃料の核的特性

核反応	反応しやすく, 中 性子を吸収しやす い	制御棒やホウ素の <mark>効果が減少</mark> する,反応度係 数をより負とするなど, 総じて安全面に悪影響
核分裂生成物のでき方	ヨウ素, トリチウ ムが増える	ョウ素の増大は被覆管 を損傷しやすくし、ト リチウムの増大は放出 率を高める
アクチニド (超ウラン 元素)	Np-237, Pu-240, 242, Am-241, Cm-242, 243, 244 などが大きく増加する	使用済み燃料や放射性 廃棄物の管理を難しく する 事故被害の増大 中性子線やアルファ線 の問題

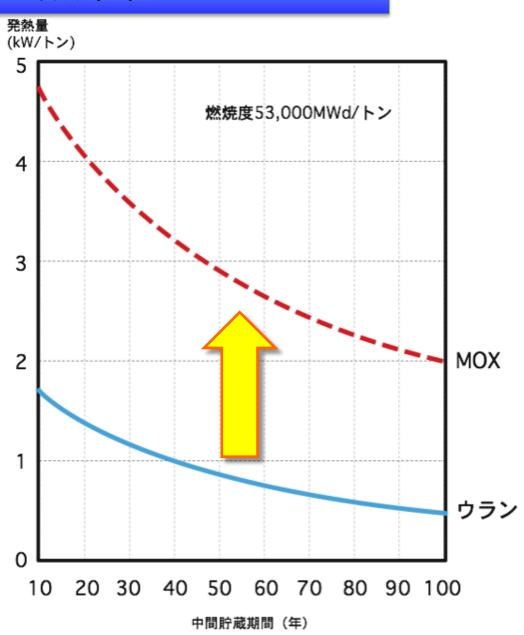

MOX燃料の放射線問題

一小小 フ 4白	おうっ	原子炉容器の <mark>脆化</mark> を早める
中性子線	増える	労働者被曝を増大させる
アルファ線	増える	使用済み燃料の発熱を増やす 放射能毒性を増大させる
		<mark>内部被曝</mark> はきわめて深刻で,事 故の結果をより重大にする
		使用済み燃料や放射性廃棄物の 管理をいっそう困難にする

MOX燃料の炉物理問題

制御棒やホウ素の効果	効きが悪くなる	原子炉の停止余裕が減 少する
出力の局所 的上昇	増える	燃料が破損しやすくなる 原子炉の停止余裕が減る
_{反応度係数} ドップラー ボイド 減速材温度	より負 より負 (BWR) より負 (PWR)	ある種の事故時に出力 の上昇がいっそう急に なる
遅発中性子 の割合	より小さくなる	反応度増加時の出力上昇 が早く,かつ大きくなり,
即発中性子 の寿命	より短くなる	運転制御がより困難になる

放射性ガスの放出


P.Blanpain et al., MOX Fuel Experience: Current Status and Future Improvements, 2004

通常運転時の放射性ガスの放出量が増えるため、被曝量が増える.

使用済み燃料の発熱

発熱量が多く 寿命の長い放射能を 多く含むので 長期間にわたる 管理が必要

C.キュッパース, M.ザイラー著 プルトニウム燃料産業, 七つ森書館

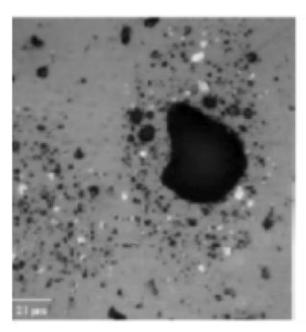
ウラン炉心及びMOX炉心内のアクチニドの量 (計算例)

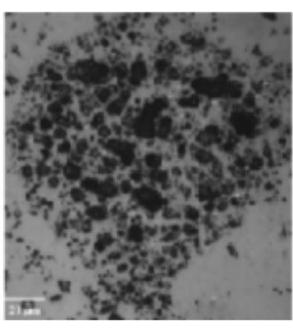
サイクル終わりの時点での低濃縮ウラン炉心及びMOX炉心内のアクチニドの量

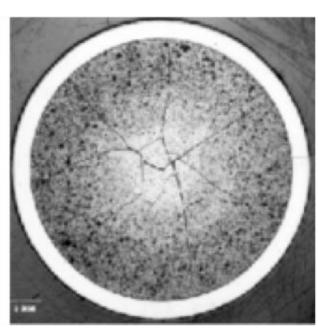
Actinides	低濃縮ウラン炉心	原子炉級MOX炉 心	MOX/低濃縮ウラン	
	(単位:MCi)	(単位:MCi)		
Np-239	1754	1443	0.82	
Pu-238	0.215	2.667	12.4	
Pu-239	0.0267	0.1368	5.12	
Pu-240	0.0348	0.3532	10.1	
Pu-241	10.6	86.51	8.16	
Am-241	0.0097	0.26	26.8	
Cm-242	2.964	58.29	19.7	
Cm-244	0.1754	3.801	21.7	

ORIGEN-Sの計算による.

エドウィン・S・ライマン,1999,


http://kakujoho.net/mox/mox99Lyman.html


MOX燃料に関わるトラブル


原発名	炉型	発生年	燃焼度(MWd/t)	損傷の状況と原因
BR3 (ベルギー)	PWR	1972	30000	端栓の溶接不良が原因の損傷(燃料棒1本)
		1980	35000	大量のクラッド付着による燃料被覆管の局所腐食 (燃料棒6本)
ベズナウ1 (スイス)	PWR	1990	15000	原子炉内に混入した異物によるへこみ(1集合体 中の2本の燃料棒)
		1997	?	燃料被覆管に損傷(3集合体中の3体). 燃料製造 工程中の問題か?
ドーデバルド (オランダ)	BWR	1973	10000	燃料被覆管の水素化(燃料棒1本)
原子炉名不明 (ドイツ)			7000~14000	原子炉内に混入した異物による損傷(2集合体中 の2本の燃料棒)
			15000~29000	原子炉内に混入した異物による損傷(1集合体中 の1本の燃料棒)
			22000~37000	原子炉内に混入した異物による損傷(1集合体中 の1本の燃料棒)
ダンピエール1 (フランス)	PWR	1993	?	原子炉内に混入した異物による損傷(1集合体中 の1本の燃料棒)
トリカスタン2 (フランス)	PWR	1997	?	不明(集合体1体)
高浜3,BNFL	PWR, MOX工場	1999	(製造時)	高浜3号炉用に製造していたMOX燃料ペレットの 検査データをねつ造。
ダンピエール4 (フランス)	PWR	2001	?	燃料交換中に1体の装荷位置を間違えたために、 MOX燃料を含む113体の集合体をつぎつぎと誤装 荷. → <mark>臨界状態に!</mark>

プルトニウムスポット (塊)

MIMAS法(仏MELOX工場ほか)

Y. Guérin et al., MICROSTRUCTURE EVOLUTION AND IN-REACTOR BEHAVIOUR OF MOX FUEL, 2000

燃料製造段階でできたプルトニウムの塊は、 運転中に早く核分裂がすすみ高温になるため、被覆管を変質させ脆くする

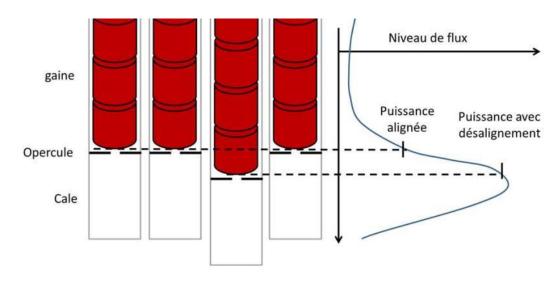
プルトニウムスポット (塊)

2017年, 仏Orano社MELOX工場で製造された MOX燃料でサイズの大きいPuの濃い塊がみつかった.

仏電力によると、これが原因でMOX燃料の上端と下端で中性子束量が増えてしまう現象がおきた.

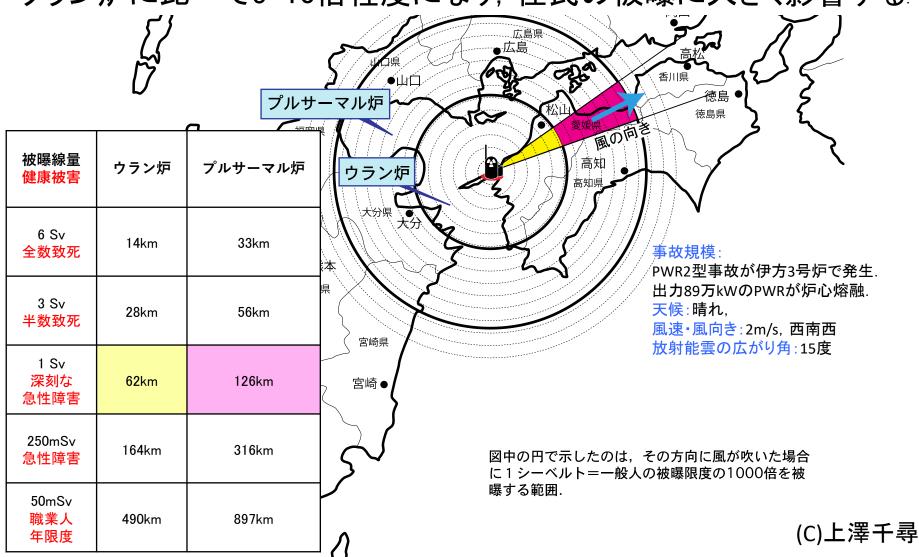
2019年にも再発.

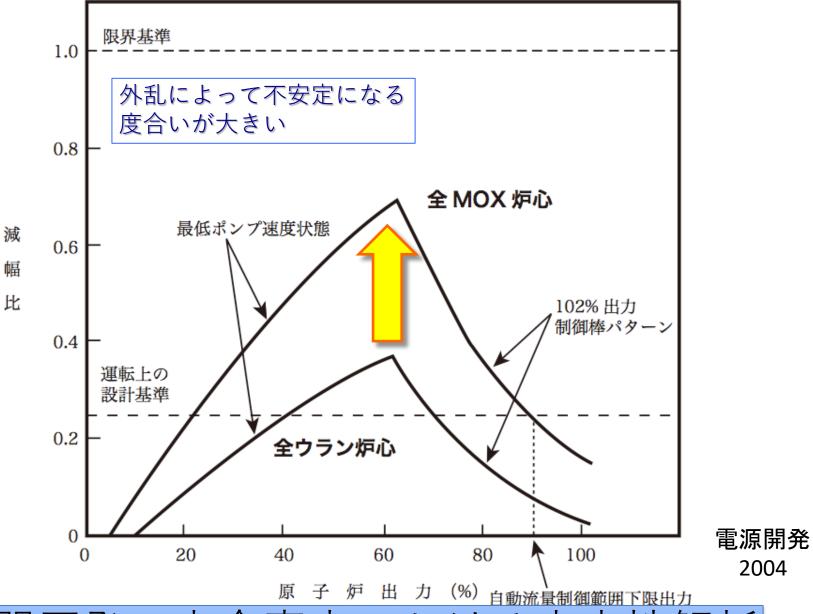
ASNのAnnual Report 2020より


対象原発(5基→22基) ブレイエ, チノン, ダンピエール, グラブリーヌ, サンローランデゾー, トリカスタン

プルトニウムスポット (塊)

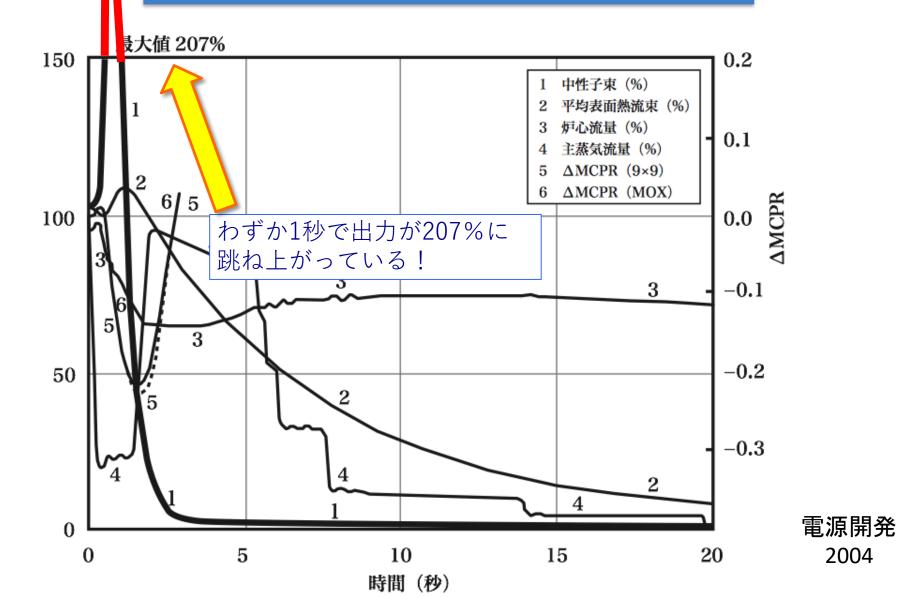
Annexe 3 à l'Avis IRSN/2018-00120 du 27 avril 2018

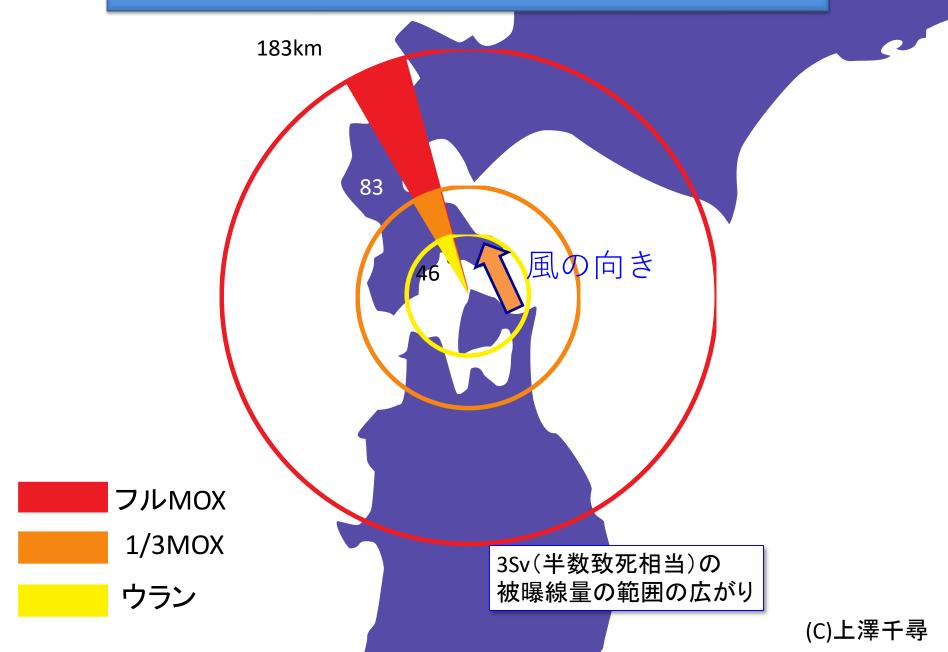

Illustration de l'effet du désalignement des colonnes fissiles sur la distribution axiale de puissance à l'extrémité basse des crayons de combustible



中性子束分布の不均一が生じ、炉が不安定に

伊方3号炉で巨大事故が起こると・・・


プルサーマル炉では炉心に蓄積したPu, Am, Cmの量が ウラン炉に比べて5-10倍程度になり、住民の被曝に大きく影響する。



大間原発の安全審査における安定性解析

大間原発の安全審査における 事故解析 (負荷遮断・タービンバイパス弁不作動)

大間原発で巨大事故がおきたら・・・

まとめ

原子力発電所が本質的に危険な 施設であることが福島第一原発 事故であらためてはっきりした.

MOXは,

ブレーキの効きが悪くなる, 原子炉の制御が難しくなる, 事故時の放射能被害が拡大する など, さらに危険性を高めるもの.

参考資料

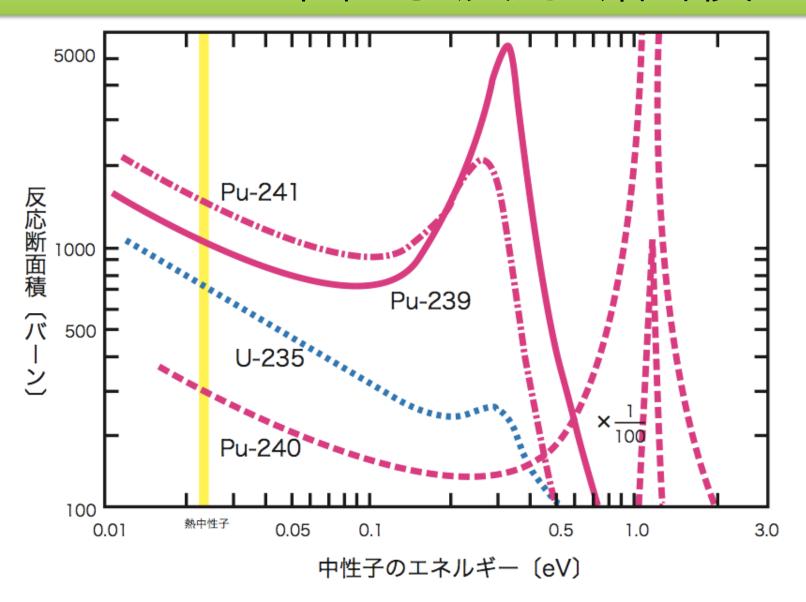
J. Takagi et al., Final Report of the International MOX Assessment COMPREHENSIVE SOCIAL IMPACT ASSESSMENT OF MOX USE IN LIGHT WATER REACTORS https://cnic.jp/english/publications/pdffiles/ima_fin_e.pdf

高木仁三郎ほか著 IMAプロジェクト最終報告 MOX総合評価、七つ森書館

予備

大間原発の制御棒

- 標準価値制御棒(炭化ホウ素粉末, B-10の濃度20%)
- 高価値制御棒(炭化ホウ素粉末, B-10の濃度を50%に高めたもの)
- ハフニウムフラットチューブ制御棒 (出力調整用)


PWRのMOX炉心の事故解析 (R.Dondeler,ドイツ・RSKによる)

制御棒価値の低下, ホウ素価値の減少, および, 減速材温度係数が大きく負になるため, 二次系弁(誤)開放や蒸気系配管の破断などの炉心過冷却事故時には, 原子炉の制御をより困難にし, 原子炉停止余裕が小さくなる.

冷却材温度係数がより負に大きくなることの効果で、PWRで主蒸気配管の破断時には、再臨界になる可能性がある.

極端なケースだが、まわりに減速されたウラン燃料がある場合、単一のMOX集合体でボイドが生じるようなケースでは、正のボイド反応度係数がもたらされる(FPガスの放出、漏えいなど).

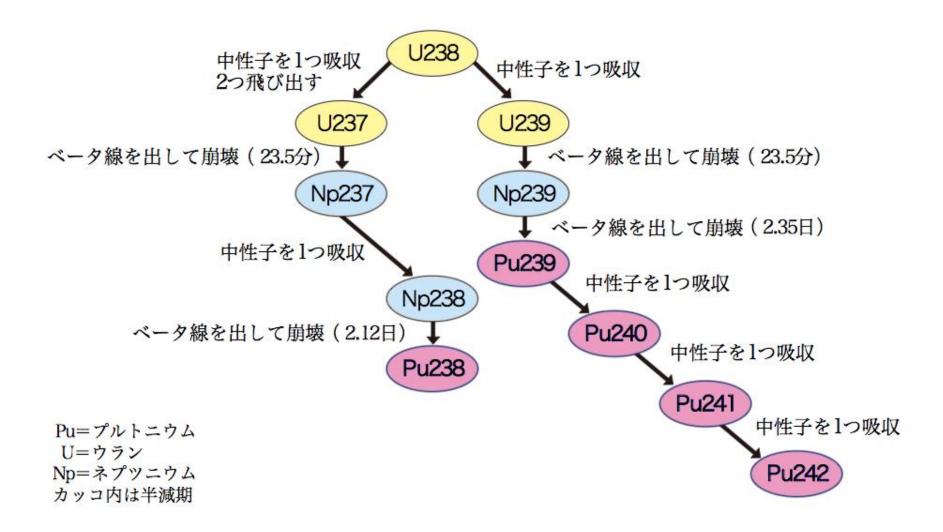
UとPuの中性子反応断面積

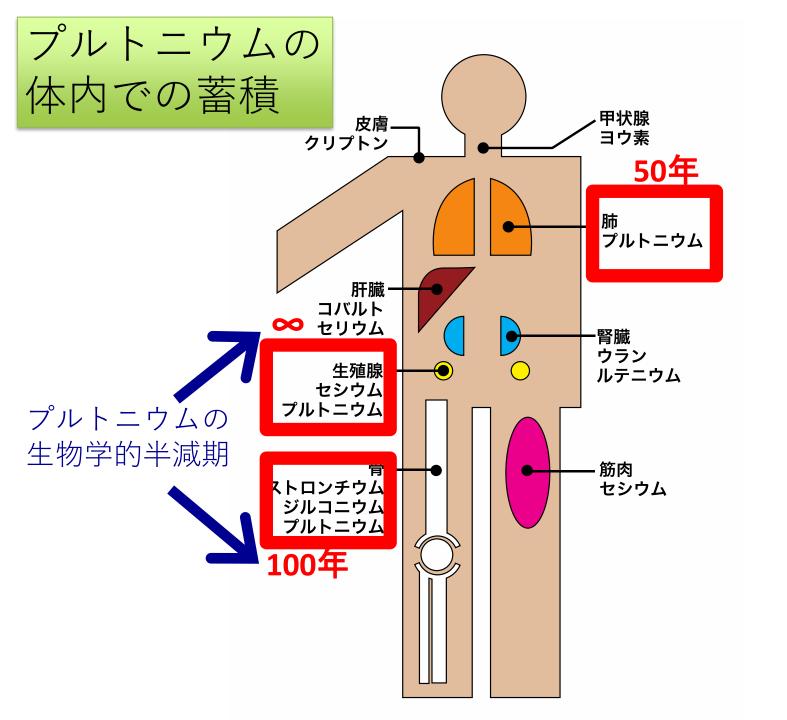
計算に使った燃料の条件

燃料	U0(ウラン)	M1 (MOX)	
濃縮度/富化度(wt%)	4.0	3.7	

M1に使ったプルトニウムの組成

核種	(wt%)	
Pu-238	1.8	
Pu-239	59.0	
Pu-240	23.0	
Pu-241	12.2	
Pu-242	4.0	


アクチニド 生成量 の著しい増大


冷却期間3年の時点での使用済み燃料の比較 (g/tHM)

燃料	U0		M1	
核種\燃焼度(MWd/t)	50000	40000	45000	50000
U-232	6.2E-03	1.0E-03	1.3E-03	1.6E-03
U-233	5.4E-03	2.0E-03	2.0E-03	2.1E-03
U-234	1.6E+02	7.0E+01	7.1E+01	7.1E+01
U-235	6.2E+03	3.2E+03	2.9E+03	2.6E+03
U-236	5.4E+03	7.2E+02	7.7E+02	8.2E+02
U-238	9.2E+05	9.2E+05	9.1E+05	9.1E+05
Np-237	7.2E+02	2.3E+02	2.5E+02	2.8E+02
Pu-236	3.9E-03	9.1E-04	1.2E-03	1.4E-03
Pu-238	3.5E+02	9.6E+02	1.0E+03	1.0E+03
Pu-239	5.7E+03	1.5E+04	1.4E+04	1.3E+04
Pu-240	2.7E+03	1.1E+04	1.1E+04	1.1E+04
Pu-241	1.4E+03	5.9E+03	5.7E+03	5.5E+03
Pu-242	9.0E+02	3.7E+03	4.0E+03	4.2E+03
Am-241	2.8E+02	1.4E+03	1.3E+03	1.3E+03
Am-242m	7.8E-01	8.8E+00	8.8E+00	8.6E+00
Am-242	9.3E-06	1.0E-04	1.1E-04	1.0E-04
Am-243	2.1E+02	1.0E+03	1.2E+03	1.2E+03
Cm-242*	2.4E-01	1.2E+00	1.3E+00	1.4E+00
Cm-243	6.1E-01	3.3E+00	3.9E+00	4.5E+00
Cm-244	8.2E+01	4.7E+02	5.8E+02	7.0E+02
Cm-245	3.4E+00	4.6E+01	6.1E+01	7.7E+01
ウラン	9.4E+05	9.2E+05	9.2E+05	9.1E+05
ネプツニウム	7.2E+02	2.3E+02	2.5E+02	2.8E+02
プルトニウム	1.1E+04	3.7E+04	3.5E+04	3.4E+04
アメリシウム゛	5.0E+02	2.4E+03	2.5E+03	
キュリウム	9.1E+01	5.3E+02	6.5E+02	
合計	9.5E+05	9.6E+05	9.5E+05	9.5E+05

プルトニウムのつくられ方と放射能毒性

プルトニウムの作られ方

原子炉級プルトニウムの1グラムの毒性

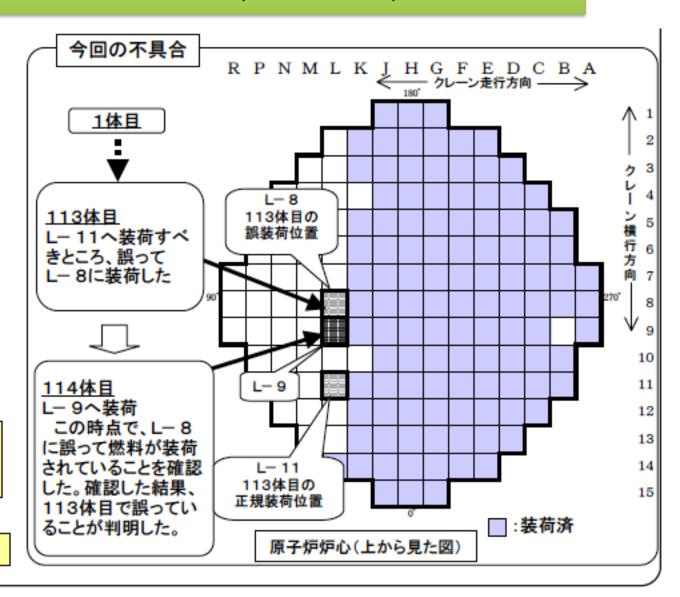
同位体	半減期(年)	崩 壊	年摂取限度 (酸化物吸入)	組成の例	1g中の放射能 (左の組成)	年摂取限度 との比較 (同左)
Pu-238	87.7	α	1800 ベクレル	2%	110億 ベクレル	610万倍
Pu-239	24100	α	2400	59%	14億	58万
Pu-240	6540	α	2400	24%	20億	83万
Pu-241	14.4	β	240000	11%	4200億	180万
Pu-242	376000	α	2700	4%	600万	2200
合計				100%	4300億	930万

燃料交換に関わるトラブル 高浜2号炉(2005.2.1)

[燃料装荷手順]

①燃料ピットクレーンにて使 用済燃料ラック内の燃料集合 体を吊上げる。

②吊上げた燃料集合体を、使 用済燃料ピット側の燃料移送 装置内パスケットに挿入す る。


③燃料集合体を燃料移送装置 にてパスケットを水平にして 原子炉容器側に移送し、パス ケットを垂直にする。

④燃料取替クレーンにて、バスケット内の燃料集合体を吊り上げ、原子炉容器上に移動する。

③所定の炉心位置に装荷する。

